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Sigma (Σ) is a nascent cognitive system – an integrated computational model of intelligent 
behavior, whether natural and/or artificial – that is based on a novel cognitive architecture: a 
model of the fixed structure underlying a cognitive system [1].  The core idea behind Sigma is to 
leverage graphical models [2, 3] – with their ability to yield state-of-the-art algorithms across the 
processing of signals, probabilities and symbols from a single representation and inference 
algorithm – in constructing a cognitive architecture/system that meets three general desiderata: 
grand unification, functional elegance and sufficient efficiency. 

A unified cognitive architecture traditionally attempts to integrate together the 
complementary cognitive capabilities required for human(-level) intelligent behavior, with 
appropriate sharing of knowledge, skills and uncertainty among them.  A grand unified 
architecture goes beyond this, in analogy to a grand unified theory in physics, to include the 
crucial pieces missing from a purely cognitive theory, such as perception, motor control, and 
emotion.  This shifts issues of embodiment, grounding and interaction into the foreground, to 
converge with work on robot and virtual human architectures, but without then relegating 
traditional cognitive concerns to the background.  Sigma approaches grand unification via a 
hybrid (discrete + continuous) mixed (symbolic + probabilistic) combination of: (1) graphical 
models, in particular factor graphs with the summary product algorithm [4]; plus (2) piecewise-
continuous functions [5].  

Functional elegance implies combining broad functionality – grand unification in this case – 
with simplicity and theoretical elegance.  The goal is something like a set of cognitive Newton’s 
laws that yield the required diversity of behavior from interactions among a small set of general 
primitives.  If the primitives are combinable in a flexible enough manner, new capabilities 
continue to flower without the need for new modules; and integration occurs naturally through 
shared primitives.  The Soar architecture, many of whose strengths and weaknesses have inspired 
choices in Sigma, took a similar approach in its early years [6], while AIXI can be seen as 
striving for an extreme version of it [7].  Although doubts remain as to whether natural cognitive 
systems are elegant in this manner – as opposed to mere evolutionary patchworks – and whether 
such elegance is even computationally feasible in artificial cognitive systems, developments such 
as rational analysis on the natural side [8] and graphical models on the artificial side provide 
continued promise.  Despite the questions, functional elegance maintains its allure because, if it 
is in fact achievable, it should yield deeper and more elegant theories with broader scientific 
reach [9] that are ultimately easier to understand and apply. 

Sufficient efficiency implies cognitive systems that execute quickly enough to support their 
anticipated uses.  On the artificial side, the primary issue is speed of execution, but joined at 
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times with boundedness.  Graphical models potentially play a key role here, as they not only 
yield broad functionality in an elegant manner, but also state-of-the-art performance across this 
breadth.  On the natural side, the primary issue is whether behavior is modeled at appropriate 
human time scales, independent of how much real time is required.  Yet speed is also an 
important secondary consideration here, particularly as experiments and models scale up.   

The remainder of this article summarizes progress to date in achieving a functionally elegant 
grand unification in Sigma.  First, the currently implemented architecture/system is described at 
a high level.  Then results are summarized across memory and learning, perception and mental 
imagery, decisions and problem solving, multiagent systems and theory of mind, and natural 
language.  Sufficient efficiency is not a major focus in these results, other than indirectly through 
the pervasive use of graphical models; although significant progress has been made on aspects of 
it [10], more is required before Sigma will be ready to support complex real-time virtual humans 
and robots. 
 
Sigma 
 
The term cognitive architecture derives from an analogy with computer architecture, the fixed 
structure of a computer that provides a programmable system (that is, a machine language).  In a 
cognitive architecture the concern is with the fixed structure that provides a (machine) language 
for expressing the knowledge and skills that comprise the learnable content of the cognitive 
system.  But a computer system isn’t just an architecture plus content, and nor necessarily is a 
cognitive system.  Sigma is presently composed of three main layers: (1) the cognitive 
architecture; (2) knowledge and skills included on top of the cognitive architecture; and (3) the 
analogue of a firmware (or microcode) architecture that sits beneath the cognitive architecture.  
The cognitive architecture provides a language of predicates and conditionals that blend ideas 
from rule-based systems and probabilistic networks.  It directly supports the layer of knowledge 
and skills on top of it.  A firmware architecture traditionally provides a programmable level in 
between what is directly supported by hardware and what is desired in the computer architecture.  
Sigma’s firmware architecture bridges its underlying implementation language (Lisp) and its 
cognitive architecture via a language of factor graphs and piecewise continuous functions (into 
which predicates and conditionals are compiled for execution).  In this section, we first explore 
Sigma’s firmware architecture and then its cognitive architecture.  Its present knowledge and 
skills are implicit in the results discussed in the next section. 

Factor graphs, in common with other forms of graphical models – such as Bayesian and 
Markov networks, and Markov and conditional random fields – provide an efficient means of 
computing with complex multivariate functions by decomposing them into products of simpler 
functions and then translating them into graphs for solution.  From such graphs, the marginals of 
the individual variables – i.e., the function’s values when all other variables are summarized out 
– can be computed efficiently, as can the function’s global mode; for example, yielding 
maximum a posterior probability (MAP) estimation.  Factor graphs in particular are undirected 
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bipartite graphs that combine variable nodes for the variables in the function with factor nodes 
for the factors into which the function decomposes (Figure 1).  Each factor node embodies a 
function, and connects to all variable nodes used in the function.  Each variable node connects to 
the factor nodes that use it.  Unlike Bayesian networks, factor graphs can be applied to arbitrary 
multivariate functions, not just to probabilistic ones.  

The representation used for factor 
functions in the graph is a critical 
determinant of the expressibility of the 
resulting system.  Sigma supports a hybrid 
mixed approach via a core representation 
based on piecewise continuous functions, 
which at present are limited to piecewise 
linear.  The domain of each factor function 
is the cross product of its variables, 
implying an n-dimensional function when 
there are n variables.  The overall function is specified in a piecewise linear manner over an array 
of rectilinear regions (Figure 2).  This representation is general enough to approximate arbitrary 
continuous functions as closely as desired.  Furthermore, restrictions on these functions – for 
example, to unit intervals with constant functions – can yield both discrete and symbolic 
functions.  Functions can also be hybrids if they comprise multiple variables of different types.  

The processing cycle in Sigma’s firmware 
architecture consists of a graph-solution phase followed 
by a graph-modification phase.  Solving a factor graph 
requires applying one of the many inference algorithms 
available for computing the values of variables in 
graphical models.  Such a solution typically involves 
providing evidence for some of the variables – for 
example, by fixing their values via functions in 
peripheral factor nodes – and then either computing the 
marginal distributions over the other variables 
individually or the modal value jointly over all of them.  

A message passing approach based on the summary product algorithm is used in Sigma to 
compute both marginals and modes (Figure 3).  Messages are sent in both directions along links, 
from variable nodes to neighboring factor nodes and from factor nodes to neighboring variable 
nodes.  This overall representation and processing is supported in Sigma’s firmware architecture 
via four memories, for factor nodes, variable nodes, links, and messages (caching the last 
message sent in each direction along each link).  

Figure 2: Bivariate function as a 2D 
array of regions with linear functions. 

Figure 1: Factor graph for the algebraic function 
f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) = f1(x,y)f2(y,z). 
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A message along 
a link always 
represents a 
distribution over the 
variable node’s 
variables irrespective 
of its direction.  
When such a 
message is received 
at a variable node a 
new outgoing 
message is generated 
along each of its 

other links as the pointwise product of the incoming messages.  This is the product aspect of the 
summary product algorithm.  If the node is a factor node, the same pointwise product is 
computed, but included in the product is also the node’s own function.  Unlike at variable nodes, 
where the outgoing message is simply this product, further processing is required to compute the 
outgoing message here.  Because the product includes all of the factor node’s variables, not just 
those corresponding to the variable node on the outgoing link, all other variables must be 
summarized out before the message is sent.  When computing marginals, Sigma uses integration 
for summarization.  When computing modes it uses maximum instead. 

The natural stopping criterion for the graph-solution phase – and thus the trigger for the start 
of the graph-modification phase – is quiescence; that is, when no significantly different messages 
remain to be sent.  Sigma’s message memory is modified dynamically during the graph-solution 
phase, but the graph-modification phase is ultimately responsible for altering the other three 
memories.  At present, the graph-modification phase can alter functions maintained within factor 
nodes, in support of updating the cognitive architecture’s working memory and some forms of 
learning, but it does not yet yield structural learning.  Working memory modification and 
gradient-descent learning both modify factor functions in Sigma’s graphs based on messages 
arriving at the factor nodes.  The latter was inspired by work on local learning in Bayesian 
networks that showed results similar to backpropagation in neural networks, but with no need for 
an additional backpropagation mechanism [11].  Episodic learning, in contrast, updates 
temporally organized factor functions in Sigma based on changes over time in corresponding 
working-memory factor functions. 

At the center of Sigma’s cognitive architecture are two memories, working memory and 
long-term memory, each of which grounds out in the four firmware memories.  The core of 
Sigma’s cognitive cycle consists, à la Soar’s, of accessing long-term memory until quiescence 
followed by decisions and learning, but with a generalized notion of what can be in long-term 
memory.  Memory access is implemented by the graph-solution phase within the firmware cycle, 

Figure 3: Summary product computation over the algebraic function in figure 1 of 
the marginal on y given evidence for x and z. 
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while decisions and learning map onto the graph-modification phase.  In addition, Sigma’s 
cognitive cycle includes a perceptual phase prior to the graph-solution phase and a motor phase 
after the graph-modification phase.  Sigma’s cognitive cycle is intended to map onto the 50 msec 
cycle found in humans and many other cognitive architectures [10].  

Working memory in Sigma is based on predicates, while long-term memory is based on 
conditionals.  A predicate specifies a class of piecewise continuous functions via a name and a 
set of typed arguments – such as Board(x:dimension y:dimension tile:tile) for 
an Eight Puzzle board with continuous x and y dimensions and a discrete tile dimension – 
providing a cognitive data structure for storage of short-term information.  Working memory 
embodies the evidence that drives processing in the long-term memory graph.  Predicates can be 
either closed world or open world, depending on what is assumed when initializing working 
memory about values not in evidence.  Predicates can also be mixed and/or hybrid, and in 
combination can enable richly structured representations [5]. 

A conditional in long-term memory specifies a knowledge fragment in terms of predicate 
patterns plus an optional conditional function (Figure 4).  A pattern includes the predicate’s 
name plus a constant or a variable for each specified argument.  In the firmware architecture, a 
constant is matched to a message by a 
factor node containing a piecewise-
constant function that is 1 in regions 
corresponding to the constant and 0 
everywhere else.  It took some time to 
realize, but was obvious in retrospect, that 
such a constant test is merely one special 
case of a general piecewise-linear filter in 
which each region may specify an 
arbitrary linear function, and that the 
firmware architecture already supports the full generality of such filters.  The conditional 
language has therefore also been generalized to support the use of such filters in patterns.  A 
second generalization has likewise been introduced for variables in support of affine transforms; 
that is, combinations of linear transforms and translations that together can yield object 
translation, rotation, scaling and reflection.  These transforms are central to work on mental 
imagery in Sigma [12, 13], as well as playing significant roles in other capabilities of interest, 
such as episodic memory, reflection, and reinforcement learning.  In essence, all numeric 
variables in Sigma – whether discrete or continuous and whether visual, temporal or other – are 
fragments of mental images to which affine transforms can be applied.  

When used in conditionals, predicate patterns can function as conditions, actions, and 
condacts.  Conditions and actions are akin to the like-named patterns in rules, and their 
functionality is comparable.  Conditions match to evidence in working memory, passing on the 
successful results for further use.  Actions propose changes to working memory.  Condacts, a 

CONDITIONAL Transition 
   Conditions: Location(state:s x:x) 
               Selected(state:s operator:o) 
   Condacts: Location*Next(state:s x:nx) 
   Function: .2<Right(0)=0> .8<Right(0)=1> 
             .2<Right(1)=1> .8<Right(1)=2> 
                         … 
             .8<Left(5)=4> .2<Left(5)=5> 
 

Figure 4: Example conditional for a probabilistic action 
model (or transition function) in a 1D grid task in which 
the actions don’t always behave as requested. 
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neologism for conditions and actions, fuse the effects of these two, both matching to working 
memory and suggesting changes to it.  They combine local constraint from the predicate’s own 
portion of working memory with global constraint from the rest of memory to support, for 
example, partial matching in declarative memory, constraint satisfaction, signal processing, and 
general probabilistic reasoning. 

Conditionals compile down to factor graphs in the firmware layer in a manner that is 
inspired by how the Rete match algorithm [14] handles conditions in rules, but extended to 
handle actions and condacts.  The main difference between conditions and actions versus 
condacts is that messages pass in only one direction for the former two – away from working 
memory for conditions and towards it for actions – while messages pass bidirectionally for the 
latter.  Conditional functions are also linked to this graph, extending the basic Rete idea for them 
as well.  Although the term conditional is intended to evoke the conditionality found in both 
rules and (conditional) probability distributions, this should not be taken to imply that rules are 
the only structural form of knowledge available, nor that conditional probabilities are the only 
functions representable via conditional functions.  The blending enabled by the firmware 
architecture is at a deep enough level and a small enough granularity that a substantially larger 
space of possibilities emerges. 

Decisions in Sigma, in the classical sense of choosing one among the best operators to 
execute next, are mediated through the introduction of an architecturally defined selection 
predicate.  Operator decisions occur just as do selections of new working memory values for any 
other predicates, except that Soar-like impasses may occur during operator selection.  An 
impasse occurs when there is insufficient knowledge available for making a decision, such as 
when there are no eligible operators for selection, or there are multiple candidates and 
insufficient knowledge to select among them.  Impasses lead to reflective processing across a 
hierarchy of metalevel states, where the goal is to resolve the corresponding impasses by 
providing knowledge that, for example, determines which operator to select. 

Implementation of multiagent systems in Sigma involves the addition of an agent argument 
to the selection and impasse predicates, and to any user-defined predicate whose contents can 
vary by agent.  This enables decisions and impasses to occur on an agent-by-agent basis, but with 
sharing of knowledge structures across them when appropriate. 

 
Results to Date 
 
The results generated so far via Sigma span memory and learning, perception and mental 
imagery, decisions and problem solving, multiagent systems and theory of mind, and natural 
language.  Memory results include demonstrating how both procedural and declarative memories 
can be defined idiomatically via conditionals and predicates [15].  A rule-based procedural 
memory is based on conditions and actions over closed-world predicates.  Declarative memory is 
based on condacts over open-world predicates plus functions.  Both semantic memory and 
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episodic memory can in this way support retrieval from long-term memory based on partial 
matches to evidence in working memory.  Semantic memory is based on a Bayesian classifier 
that retrieves/predicts both object categories and features not in evidence via marginals that are 
computed from learned regularities over many examples.  Episodic memory stores a temporally 
organized history of working memory, enabling the best matching past episode to be retrieved as 
a distinct individual via MAP. 

All of the learning results to date involve modifying conditional functions.  Episodic 
learning maintains the history of changes to working-memory predicates in functions specified 
within automatically generated episodic conditionals.  Gradient-descent learning modifies 
conditional functions based on messages that arrive at their factor nodes.  With gradient-descent 
learning over appropriate conditionals in Sigma, it is has been possible to demonstrate forms of 
supervised learning, unsupervised learning – in a manner akin to expectation maximization – 
learning of action models (i.e., transition functions) and maps (relating perceived objects to their 
locations), and reinforcement learning (RL) [16, 17].  Supervised, unsupervised and map 
learning, plus model-based RL, all proved possible with no other change to the architecture than 
the addition of gradient-descent learning.  However, to support both model-free RL and the 
learning of action models, an additional enhancement to the architecture was required to make 
pairs of successive states available for learning within single cognitive cycles. 

Perception has been demonstrated in Sigma via a conditional random field (CRF) that 
computes distributions over perceived objects from noisy feature data, and via a localization 
graph that yields distributions over (current and past) locations from distributions over (present 
and past) objects and a map [18].  These two independent graphs can be combined into a single 
larger graph that yields distributions over locations based on noisy feature information. 

Mental imagery leverages conditionals along with piecewise-linear functions that can be 
continuous, discrete or hybrid depending on the kind of imagery involved [12, 13].  As described 
earlier, the Eight Puzzle board can be represented, for example, as a 3D hybrid function, with 
continuous x and y dimensions plus a discrete tile dimension.  Results in mental imagery have 
spanned object composition and deletion; object translation, scaling, inversion, and rotation (at 
multiples of 90°); and extraction of features from composite objects, such as overlaps, edges, and 
directional relationships.  

Decision making and problem solving have been demonstrated in a Soar-like manner, with  
preferences encoded via functional values that combine to determine what operator is chosen on 
each cycle [19], and impasses occurring when decisions cannot be made.  Problem solving can 
occur either via a sequence of steps within the base level, or across meta-levels as impasses 
occur.  Un-Soar-like decision-theoretic decision making has also been demonstrated, with a 
multi-step POMDP implemented via conditionals that generate preferences for operator selection 
based on probabilistic projection [18].  Such a POMDP has been combined with the joint 
perception+localization graph described above to yield a single system in which object 
perception feeds localization, and localization feeds decision making, all within a single decision 
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[18].  Initial work on theory of mind in Sigma has built on its multiagent capabilities plus 
POMDPs to demonstrate both the derivation of Nash equilibria for two-person, one-shot games, 
and intertwined multistep, multiagent POMDPs. 

Early work on natural language (NL) has demonstrated a form of statistical response 
selection that is modeled after (part of the) approach taken in the NPCEditor [20].  Given the 
words in an input sentence and appropriate statistical background knowledge, a choice is made 
of an output sentence from a set of prespecified candidates.  We have also scaled up semantic 
memory and learning in support of particular NL classification tasks, such as word sense 
disambiguation and part of speech tagging [16]. 
 
Conclusion 
 
Although Sigma is still in a fairly early stage of development, and is not yet ready for large-scale 
real-time tasks, demonstrations to date indicate some of what is possible when graphical models 
are at the heart of a cognitive architecture/system.  The beginnings of grand unification have 
been demonstrated via hybrid representations, and via combinations of perception and imagery 
with cognitive decision making and problem solving.  Functional elegance has been 
demonstrated via a range of memory, learning, and decision making capabilities supported on a 
uniform base.  The demonstration via factor graphs of state-of-the-art algorithms such as Rete for 
rule match and conditional random fields for vision also foreshadows sufficient efficiency.  
Much more of course remains to be done, but the path and its promise should be evident. 
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